Recently Uploaded

What is Q Value of Nuclear Reaction? Derive the Q- value equation.

Q Value of Nuclear Reaction


Definition:

                  " The difference between sum of kinetic energies of the product and sum of kinetic energies of the reactant in a nuclear reaction is called Q-value of a nuclear reaction. "

                   Consider a projectile nucleus "a" having kinetic energy  Ea and mass ma is incident on rest target nucleus "X" having mass mx . The target nucleus "X" has no kinetic energy because it is at rest.

                   The product nucleus "Y" is generated after nuclear reaction has kinetic energy Ey and mass my. The emerging nucleus "b" is generated after nuclear reaction has kinetic energy Eb and mass mb
 
                  The law of mass energy is given as 
                                    (KE + mc2 ) = Constant
                  The nuclear reaction is 
          
                                     a + X  ⟶  Y + b
                
                 (ma c2  + Ea) + (mx c2  + 0 )   =  (my c2  + Ey ) + (mb c2  + Eb)
                 (ma + mx)c2 - (my+ mb )c2   =  Ey + Eb - Ea
                 (ma + mx)c2 - (my+ mb )c2   = Q

               Where Q-value of the nuclear reaction is defined as

                                Q =  Ey + Eb  - Ea   
  

Q -Value Equation

                   
                The Q -value equation is used to establish a relationship between Q-value of a nuclear reaction and kinetic energy of projectile nucleus, kinetic energy of emerging nucleus and their masses. 

               Consider a projectile nucleus "a" having kinetic energy "Ea" and mass  "ma"  is incident on a target nucleus "X" at rest having mass  "ma".
    
                The projectile and target merge into a compound nucleus after reaction. The compound nucleus breaks into residual nucleus "Y" and emerging nucleus "b" after an interval of time 10-16 s. Now residual nucleus "Y" has kinetic energy "Eyand mass "my while emerging nucleus "b" has kinetic energy "Eb" and mass "mb"

                The daughter nucleus "Y" scatters at angle φ while emerging nucleus "b" gets scattered at angle Ó¨ as shown in diagram below.




           Now redraw the diagram in terms of momentum vectors.



    Momentum conservation along horizontal direction is

                               Pa + 0 = PyCosφ + PbCosÓ¨
                                PyCosφ =  Pa  - PbCosÓ¨    - - - - - - - - - - -(1)
   Momentum conservation along vertical direction is 

                                0 = PySinφ - PbSinÓ¨
                               PySinφ = PbSinÓ¨               - - - - - - - - - - -(2)
  Square eq(1) and eq(2) and add 

  Py2Cos2φ  +  Py2Sin2φ  =  ( Pa  - PbCosÓ¨)2 + (  PbSinÓ¨)2
      Py2 ( Cos2φ + Sin2φ) =  Pa2 + Pb2 Cos2Ó¨ - 2Pa Pb CosÓ¨ + Pb2 Sin2Ó¨
                          Py2  =  Pa2 + Pb2 - 2Pa Pb CosÓ¨

    Use relation P2 = 2mE derived from KE = E= 1/2 mV2 = P2/2m

    2myEy  =  2ma E + 2mbEb -2`\sqrt{4m_aE_am_bE_b}`CosÓ¨
    myEy   =   maEa  + mbEb - `\sqrt{4m_aE_am_bE_b}`CosÓ¨   - - - - - - -  - - - (3)

  The Q-value of a nuclear reaction X(a,b)Y 

                            Q =  Ey + Eb  - Ea   
                             Ey =  Q - Eb  + Ea    
        Put this value in eq(3)
     
           my( Q - Eb + Ea) =  maEa + mbEb - `\sqrt{4m_aE_am_bE_b}`CosÓ¨ 

           myQ - myEb + myEa =  maEa + mbEb - `\2sqrt{m_aE_am_bE_b}`CosÓ¨
     
          myQ = myEb - myEa + maEa + mbEb - `\2sqrt{m_aE_am_bE_b}`CosÓ¨

              Q = Eb(1 + mb/my ) + Ea( ma/my - 1) - `\frac{2\sqrt{m_aE_am_bE_b}\}{m_y} `CosÓ¨

          This is called Q-value of a nuclear reaction. 

Threshold Energy

Definition

              " The endothermic reactions in which Q < 0 requires a net energy input. The minimum amount of energy input required to start endothermic reaction is called threshold energy."
 
          The Q-value of a nuclear reaction can be written as 
    
                                      `\frac{m_y\+\m_b}{m_y}E_b\-\frac{m_y-\m_a}{m_y}E_a\-\frac{2\sqrt{m_am_bE_a}}{m_y}\Cos\theta\sqrt{E_b}\-\Q\=0`

                                        `(m_y+m_b)E_b-2\sqrt{m_am_bE_a}Cos\theta\sqrt{E_b}-\[(m_y-m_a)E_a+Qm_y\]=0`

          This is quadratic equation of the form ax2 + bx + c = 0. Its solution is 

                                        `x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}`

                                        `\sqrt{E_b}=\frac{2\sqrt{m_am_bE_a}Cos\theta\pm\sqrt{4m_am_bCos^2\theta\+4(m_y+m_b)\[(m_y-m_a)E_a+m_yQ]}}{2(m_y+m_b)}`

`\sqrt{E_b}=\frac{\sqrt{m_am_bE_a}Cos\theta}{(m_y+m_b)} \pm\sqrt{\frac{m_am_bE_aCos^2\theta}{{(m_y+m_b)}^2}+\frac{(m_y-m_a)E_a+Qm_y}{(m_y+m_b)}}`

`\sqrt{E_b}=V\pm\sqrt{V^2+W}`

          The nuclear reaction is possible when `\sqrt{E_b}` is real and positive. The value of `\sqrt{E_b}` is real and positive when `\V^2+W` is zero.

                                                 `\V^2+W` = 0 

`\frac{m_am_bE_aCos^2\theta}{(m_y+m_b)^2}+\frac{(m_y-m_a)E_a+Qm_y}{(m_y+m_b)}` = 0

`\frac{m_am_bE_aCos^2\theta}{(m_y+m_b)}+(m_y-m_a)E_a+Qm_y` = 0

          Then Î¸ goes to zero, Ea → Eth 

`\frac{m_am_bE_{th}(Cos0)^2}{(m_y+m_{b)}}+(m_y-m_a)E_{th}+Qm_y=0`

`\left[\frac{m_am_b+(m_y+m_b)(m_y-m_a)}{m_y+m_b}\right]E_{th}` = -Qmy

`\left[\frac{m_am_b+m_ym_y-m_am_y+m_bm_y-m_am_b}{m_y+m_b}\right]E_{th}=-Qm_y`

`\left[\frac{m_y-m_a+m_b}{m_y+m_b}\right]m_yE_{th}=-Qm_y`

`\left[\frac{m_y-m_a+m_b}{m_y+m_b}\right]E_{th}=-Q`

`E_{th}=-Q\left[\frac{m_y+m_b}{m_y-m_a+m_b}\right]` - - - - - - - - -(4)

          The Q-value of a nuclear reaction is given as

                                          (ma + mx)c2 - (my+ mb )c2   = Q

                                                 ma + mx - my- mb   = Q/c2 

                                                 ma + mx - my- mb = 0 [ Use Q/ c2 ≈   0]

                                                 mx  =  my  - ma + mb      - - - - - - - - - - - - -(5)

          Put eq(5) in eq(4)

                            `E_{th}=-Q\left[\frac{m_y+m_b}{m_x}\right]`

          This is energy required to induce a nuclear reaction X(a, b)Y and called threshold energy.


No comments