Recently Uploaded

Discuss Transmutation by Photons and Alpha Particles?

 Transmutation by Photons

          The disintegration of atomic nuclei by the bombardment with high-energy photons is called transmutation by photons or photodisintegration.


          The photon can only supply its kinetic energy to target nucleus in nuclear reaction because photon is massless. This kinetic energy must be at least as great as the binding energy of target nucleus. The photodisintegration reactions are endothermic having threshold energies of the order of 10MeV. 

          There are two exceptions for which photodisintegration does not occur with γ-rays from natural radioactive substance. These exceptions are called deuteron which has binding energy of only 2.2 MeV and nuclide 4Be9 in which one neutron is loosely bond. 

          The photodisintegration reactions are used to calculate binding energy of nuclear particles. For example, the threshold energy is just equal to binding energy of deuteron. 

                                    γ         +      d   ⟶    p       +    n

          The γ-rays of 17MeV energy are produced when Li is bombarded with protons. These γ-rays are successfully used to produce photodisintegration of other nuclides such as (γ, n) reaction.


                                15P31    +    γ    →   [15P31]* →    15P30     +     0n1

          The (γ, p) nuclear reaction requires still higher energies and can be observed with high-energy photons from betatron.

          The γ-rays involved in nuclear reactions given below have energies about 50MeV.


                          13Al27    +    γ    →   [13Al27]*       →    11Na25     + 1H1     +      1H1

                              13Al27    +    γ    →   [13Al27]*      →    11Na25     + 1H1     +      1H1    + 0n1

           Some examples of photodisintegration reactions are 

(γ, n) Photo Reaction

                            1H2    +    γ    →   [1H2]* →    1H1     +     0n1
                
                                 4Be9    +    γ    →   [4Be9]* →    4Be8     +     0n1

(γ, p) Photo Reaction

                            12Mg25    +    γ    →   [12Mg25]* →    11Na24     +     1H1   

(γ, 2p, n) Photo Reaction

                         13Al27    +    γ    →   [13Al27]*      →    11Na25  +    21H1    + 0n1

           Now we discuss transmutation by alpha particles.

                  Transmutation by Alpha Particles

                                                                   The ɑ-particle is a helium nucleus (2He4). It was first time used by Rutherford in 1919 for the transmutation of nitrogen nucleus. The ɑ-particle must have sufficient energy for transmutation to over the Coulomb barrier. 

          The apparatus used by Rutherford is shown in diagram. There is an opening in one end of a box B which is covered by a silver foil F. A zinc sulfide screen is placed at S. The scintillations on the screen were observed by microscope M. The source of alpha particles is radium C placed on a small disc D. The nitrogen gas is introduced through side tubes T. 


          The scintillation are observed on screen caused by particles ejected from nitrogen nucleus by the impact pf alpha particles. The measurement of the magnetic deflection of the particles suggested that they are protons. 

          The disintegration of nitrogen by alpha particle may be expressed as 

                              2He4    +    7N14    →   [9F18] →    8O17     +     1H1   

          The symbols on left side stands for reacting nuclides. The symbol in brackets stands for unstable nucleus formed as a  result of the capture of alpha particle called compound nucleus.

          The emitted proton and residual nucleus on right side are called products of reaction. This transmutation may also be represented as N14 (ɑ, p)O17 

(ɑ, P) Nuclear Reaction

          The general form of (ɑ, P) nuclear reactions is written as 

                          2He4    +    ZXA    →   [ Z+2CnA+4 ] →    Z+1YA+3     +     1H1   

          The charge of residual nucleus increases by one unit and mass increases by three units.

Examples

                        2He4    +    5B10      →      [ 7N14 ]    →    6C13     +     1H1   

                        2He4    +    11Na23      →      [ 13Al27 ]    →    12Mg26     +     1H1  

(ɑ, n) Nuclear Reaction

          The general form of  (ɑ, n) nuclear reaction is 

                      2He4    +    ZXA    →   [ Z+2CnA+4 ] →    Z+2YA+3     +     0n1 

Examples

                        2He4    +    7N14    →   [9F18] →    9F17     +     0n1   

          It is called Rutherford reaction.

                         2He4    +    4Be9    →   [6C13] →    6C12     +     0n1   

        It is called Chadwick reaction.

(ɑ,𝜸) Nuclear Reaction 

         The capture of alpha particle by neutron does not always result in the emission of a proton by the compound nucleus when Be is bombarded by alpha particles, one of the products of the reaction is 𝛄-rays.

                    2He4    +    4Be9      →       [6C13]        →      6C13     +     𝛄

No comments